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Abstract—Multi-field Packet classification is the main function 
in high-performance routers. The current router design goal of 
achieving a throughput higher than 40 Gbps and supporting 
large rule sets simultaneously is difficult to be fulfilled by 
software approaches. In this paper, a set pruning trie based 
pipelined architecture called Set Pruning Multi-Bit Trie 
(SPMT) is proposed for multi-field packet classification. 
However, the problem of rule duplications in SPMT that may 
cause a memory blowup must be solved in order to implement 
SPMT with large rule sets in FPGA devices consisting of 
limited on-chip memory. We will propose two rule grouping 
schemes to reduce rule duplications in SPMT. The first scheme 
called Partition by Wildcards (PW) divides the rules into 
subgroups based on the positions of their wildcard fields. The 
second scheme called Partition by Length (PL) rules partitions 
the rules into subgroups according to their prefix lengths. 
Based on our performance experiments on Xilinx Virtex-5 
FPGA device, the proposed pipeline architecture can achieve a 
throughput of over 100 Gbps with dual port memory. Also, the 
rule sets of up to 10k rules can be fit into the on-chip memory 
of Xilinx Virtex-5 FPGA device.  

I.  INTRODUCTION 
As the Internet becomes widely used, the next generation 

routers need to support a variety of value-added network 
services such as QoS differentiation, traffic billing, network 
security, and others. In order to support these services, 
packet classification that classifies packets traversing the 
Internet into flows is applied. It is well known that multi-
field packet classification is a difficult problem [11]. 

Algorithms for packet classification can be divided into 
two groups: software-based and hardware-based. Software-
based algorithms have an advantage of the flexibility but are 
slow. For example, pipeline and parallel techniques are hard 
to apply to software-based algorithms and can hurt 
throughputs. Today, researchers have turned to the hardware-
based solutions that use field programmable gate array 
(FPGA), application specific integrated circuit (ASIC), and 
ternary content addressable memory (TCAM). ASIC and 
FPGA based approaches usually store the rule set in static 
random access memory (SRAM) or TCAM that stores not 
only 0 and 1 but also “don’t care” value on TCAM cells. At 
present, the achievable link rate is OC-768, i.e., 40Gbps, 
which is equivalent to the processing speed of one 40-byte 
packet every 8 ns.  

In order to achieve such high throughput, we develop a 
data structure called set pruning multi-bit trie (SPMT) which 
is very suitable for the pipeline architecture. In order to 
reduce the memory blowout problem caused by the rule 
duplications in set pruning tries, two rule partitioning 

schemes are proposed to divide rules into subgroups based 
on wildcards and prefix lengths. Then, SPMT is built for 
each subgroup and all the SPMTs are searched in parallel to 
obtain the best matched rule.  

Our experimental results conducted on Xilinx Virtex-5 
XC5VFX200T FPGA [13] device show that the proposed 
pipeline architecture can achieve a throughput of over 100 
Gbps with dual port memory. Also, the block RAMs of size 
16,416 Kbits available in the Xilinx Virtex-5 XC5VFX200T 
FPGA are capable of storing the rule sets of up to 10k rules.  

The rest of the paper is organized as follows. In section 2, 
we introduce the background about packet classification 
problem and related work. The section 3 illustrates the 
proposed design. Section 4 describes implementation of our 
proposed design. In section 5, we present our experiment 
results. The last section is the conclusion. 

II. BACKGROUND AND RELATED WORK 
Packet classification in the routers classifies packets into 

flows by searching the rule set which consists of a finite set 
of rules (or called filters) for obtaining the action, i.e. flow 
ID. Each filter consists of a set of fields and the associated 
action. The types of match conditions in the fields are 
typically prefixes for 32-bit source and destination IP fields 
(SA/DA), ranges for the 16-bit source and destination ports 
(SP/DP), and an 8-bit protocol number for transport layer 
protocol (PROT). 

Formally, a filter F with d fields is defined as F = (f1, 
f2, …, fd). A packet P is said to match a particular filter F if 
the ith header field of packet P is contained in fi for all i. The 
packet may match multiple filters and the classifier only 
applies the action with highest priority among all the 
matching filters [11]. An example rule set is shown in Table 
I while we assume that the packet header fields consist of 8-
bit source/destination IP address prefix, 5-bit 
source/destination port range, and 8-bit protocol number. 

Not so many packet classification proposals have been 
implemented on FPGAs. Existing FPGA implementations of 
packet classification algorithms include Improved HyperCuts 
[3], Power Saved HyperCuts [6], Dual Stage Bloom Filter 
Classification Engine (2sBFCE) [7], Bloom Based Packet 
Classification (B2PC) [8], and Nest Level Tuple Merging 
and Cross-product (NTLMC) [2]. Also, it is worth 
mentioning that several pipeline architectures have been 
proposed for IP lookup based on trie data structures, such as 
[4][5]. 

An improved data structure called set pruning trie [10] 
avoids the backtrack operations and thus increases the search 
speed. However, set pruning trie incurs a memory blowout 
problem caused by the rule duplications in the tries at the 

2010 18th IEEE Annual International Symposium on Field-Programmable Custom Computing Machines

978-0-7695-4056-6/10 $26.00 © 2010 IEEE

DOI 10.1109/FCCM.2010.40

215

Authorized licensed use limited to: National Cheng Kung University. Downloaded on June 05,2010 at 11:07:04 UTC from IEEE Xplore.  Restrictions apply. 



lower levels. Fig. 1 shows an example of the 1-bit set 
pruning trie constructed from the rules in Table 1 by using 
the two prefix fields. Many rules are duplicated in the lower 
levels to avoid backtracks for finding the correct results. 
Notice that the duplicated rule R6 is duplicated in many 
places. Since trie-based data structure is very suitable for 
pipeline design, our proposed SPMT pipeline architecture is 
based on the set pruning trie. 

III. PROPOSED SCHEMES 
In this section, we propose to use the multi-bit version of 

set pruning trie as our basic data structure because it is easy 
to have a very fast pipeline implementation for the trie-based 
structure. Due to a lot of rule duplications in the lower level 
of the set pruning trie, we focus on reducing memory 
consumption by using the rule partitioning schemes to avoid 
duplicating rules as much as possible. Additionally, we target 
on the 5-field rule tables. 
A. Set Pruning Multi-Bit Trie 

It is well-known that the traditional multi-bit trie is very 
suitable for the IP address lookup pipelined search engine [5]. 
Because the 5-field set pruning trie uses too many stages, we 
develop a multi-bit version of the set pruning trie called set 
pruning multi-bit trie (SPMT) to minimize the number of 
pipeline stages. The SPMT building process is very similar 
to the set pruning trie. The only difference is that when 
building SPMT we have to avoid the redundant data 
structures caused by the address expansion onto the multi-bit 
nodes. In other words, the nodes should be shared and 
pointed to by as many pointers as possible. For the reason of 
limited space, Fig. 2 only shows the 2-bit SPMT constructed 
from the source and destination IP address fields of the rules 
in Table I. Each node contains four elements with indices of 
00, 01, 10, 11 in the 2-bit SPMT. Each element contains a 
next-field link and a next-level link that are drawn by dotted 
and solid lines in Fig. 2, respectively. The root node has 2 

prefixes “*” and “0*” in the SA field. The prefix “0*” is 
expanded to 00 and 01 and the prefix “*” is expanded to 00, 
01, 10 and 11. Therefore, the next-field link of the two 
elements 00 and 01 of the root node point to the same next-
field node X that consists of the sub-rules from R1, R2, R3, 
and R6. Similarly, the elements 10 and 11 of the root node 
point to node Y that consists of sub-rules from only R6. 
When we construct DA field, the nodes W, X, Y could share 
the same node Z pointed to by the same next-level link. Our 
experimental results show that the node sharing can reduce 
40%~45% of the trie nodes. 

The search operation is similar to that of the traditional 
set pruning trie [10]. The only difference is that we use 
multiple bits to traverse the SPMT nodes. Although some 
nodes can be shared, duplications inside the nodes are not 
removed. Also, the duplications caused by pushing the rules 
in upper levels to the lower levels incur a lot of memory 
usage. Hence, we proceed to seek improvements by 
analyzing the wildcard field values contained in rules as 
follows. 
B. Partitioning by Wildcards (PW) 

We can divide 5-field rule set into 32 possible cases 
(subgroups) such that the wildcard field values appear in 
some specified fields. However, we ignore the protocol field 
for dividing rules into subgroups because the protocol field 
has more values of TCP and UDP than wildcard and thus the 
impact on rule duplication from protocol field in set pruning 
trie is much smaller than the other four fields. As shown in 
the example of Fig. 1, wildcard fields will be duplicated in 
many places in the lower levels. Hence, we can divide the 
rules into at most 16 subgroups and an SPMT is built for 
each subgroup by ignoring the wildcard fields. Thus, a lot of 
rule duplications can be removed from the resulting SPMT. 

As shown in Table II, we analyze three rule sets 
containing about 10K rules generated by ClassBench [12]. 
The IPC tables have more non-empty subgroups than ACL 
and Firewall tables which just have 5-6 subgroups. Although 
we divide the rule set into subgroups by wildcards, non-
wildcard fields are still covered by short prefix of lengths 1 
and 2. Based on our analysis on the length distribution of the 
source and destination IP fields, some of the rule tables 
contain up to 50 percentages of the rules whose lengths are 1 
or 2. Therefore, we can further divide the subgroups 
partitioned by wildcards into many smaller subgroups and 
thus the reduction of rule duplications can be reduced further. 
C. Partitioning by Lengths (PL) 

Figure 2. The 2-bit SPMT constructed from the rules in Table I. 
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Filter Action 
# SA DA SP DP PROT FlowID 

R1 0* 10* [16:23] [0:31] UDP 0 
R2 0* 00* [8:15] [28:31] UDP 1 
R3 0* 1* [16:31] [28:31] UDP 2 
R4 001* 11* [28:31] [28:31] UDP 3 
R5 001* 0010* [4:5] [0:15] UDP 4 
R6 * 111* [28:31] [0:15] UDP 5 
R7 001* 0* [0:15] [16:23] UDP 6 

TABLE I. A SAMPLE RULE SET 

DA field 

SA field 
0 

0 

Figure 1. A 2-D 1-bit set pruning trie example. 
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In some cases, using PW scheme to partition Firewall 
tables still needs a lot of memory because Firewall has many 
prefixes of length 0, 1 and 2 in destination IP address fields. 
The prefixes of lengths 0, 1, and 2 almost occupy over half 
of rules in Firewall tables. Hence, we focus on partitioning 
the rule set by prefix length. The main idea is that we like to 
select k boundary prefix lengths in the first field and divide 
the rule set into k + 1 subsets. If k = 1 and the selected length 
is t, the rules with the first field value of prefix length less 
than or equal to t are put into one subset and the other rules 
are put into another subset. This case is exactly the same as 
the simple k_set technique [1]. Thus, the original rules in 
which prefix field lengths shorter than and equal to t in the 
subset will not be duplicated in the other subset containing 
the prefixes of lengths longer than t. 

To further explore the simple k_set technique, we 
propose the dynamic programming formula to select k 
boundary prefix lengths for the purpose of partitioning rules 
into (k + 1) subsets. By using the dynamic programming 
technique, we can construct a simple formula to compute 
what is the best set of k lengths to minimize the rule 
duplications. The dynamic programming formula is based on 
the Duplicating Cost (DC) which is defined to be number of 
times that a rule is duplicated in SPMT. We use the example 
in Fig. 1 to describe how to calculate the DC of a rule R6. 
Assume R6 = (*, 111*) is a 5-field rule with the first and 
second field values set to * and 111*, respectively. Rule R6 
should be duplicated in the valid nodes (prefixes) covered by 
R6 in the binary trie of the first field. Fig. 1 shows that there 
are two valid nodes covered by R6 in the first field that are 
marked as gray circles. For each valid node covered by R6 in 
the first field binary trie, we have to calculate the number of 
nodes in the second field trie that are covered by the second 
field value of R6. We continue the same process in the 
following fields until the penultimate field. Finally, the DC 
of rule R6 can be obtained by summing up all the 
duplications in all the fields up to the penultimate field. 
Since the second field is already the penultimate field, no 
further computation is needed in the third field of Figure 1. 
Totally, rule R6 is duplicated 3 times and thus the 
duplicating cost of R6 is 3 (denoted as DuplicatingCost(R6) 
= 3). 

We will design our dynamic programming formula. 
Consider the general problem of determining the minimum 
duplicating cost DC [L, k] for prefixes of lengths 0 to L by 
using k boundary lengths. The number k is constrained by the 
maximum boundary length L, i.e., k must not be greater than 
L. The prefix length of rule r is denoted by PLen(r). When 
we select length t as the first boundary length, all the prefixes 
of lengths greater than or equal to t have to be expanded to 
length L which is primed to the rule duplications. After 
selecting one boundary length, k – 1 more boundary lengths 
have to be selected afterwards. The remaining k – 1 
boundary lengths are in the range [k – 1, L – 1]. Finally, we 
recursively find the minimum DC for the prefixes of lengths 

1 to t and the calculate DC for the rules of lengths greater 
than t. As a result, we can form the dynamic programming 
formula as follows. 

{ 1,..., 1}
{ | ( ) }

{ | ( ) }

[ , ] [ , 1] ( )

[ ,0] ( )

t k L
r R PLen R L

r R PLen R L

DC L k DC t k DuplicatingCost r

DC L DuplicatingCost r

Min
∈ − −

∈ ≤

∈ ≤

⎧ ⎫⎪ ⎪= − +⎨ ⎬
⎪ ⎪⎩ ⎭

=

∑

∑

 

The initial problem is DC [Lmax_1, k], where Lmax_1 is the 
maximum prefix length of the first field that is targeted for 
partition. 

IV. IMPLEMENTATION 
A pipelined and parallel design is used to improve the 

throughput of our proposed SPMT. The trie nodes in the 
same level are mapped to a single pipeline stage. Each 
packet traversing the SPMT level by level is equivalent to 
traversing the pipeline architecture stage by stage. Each 
pipeline stage must perform the following actions: 
1. The memory of the SPMT is accessed to obtain the next 

level address and next field address. 
2. The next field memory address of the longest prefix is 

recorded from the first field to the last field. 
3. If the last field is reached, the matching rule information 

is obtained and then its priority is compared with 
matching rule obtained from previous stages. 
FPGAs provide massive parallelism and high-speed dual-

port Block RAMs distributed across the device. We exploit 
these features and propose a parallel architecture, as shown 
Fig. 3. The design is based on the following considerations: 
1. A pipeline Pi is constructed for each subgroup (PRTi) of 

the original rules after applying the proposed PW and PL 
partitioning schemes. The entire rule set is equal to ∑ 
PRTi for i = 1 … n. 

2. Traversing the SPMT level to level and each level is 
mapped to a stage in pipeline. It is shown as gray color 
blocks in Fig 3. 

3. Assume a field is X-bit wide and stride is Y-bit. The 
number of pipeline stages required is ⎡X/Y⎤. 

4. The incoming packets will be input in all pipelines in 
parallel. Then, each pipeline is executed independently. 
The packet header field arrangement engine will select a 
field order to construct the proposed SPMT for each 
subgroup. 
Each pipeline will output a result which will be sent to 

priority resolver to select the rule with highest priority as the 
final result. 

Rule name ACL1_10K FW1_10K IPC_10K
# of filters 12947 13146 11831
# of groups 5 6 12

TABLE II. SUBGROUPS PARTITIONED BY WILDCARD POSITIONS. 
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Figure 3. Block diagram of the parallel linear pipeline. 
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V. PERFORMANCE 
We use Xilinx ISE 10.1 development tools and the target 

device is Xilinx Virtex-5 XC5VFX200T [13] with ‘–2’ 
speed grade. The tables are obtained from a publicly 
available tool, ClassBench [12] and three real-life rule tables. 
We evaluated the memory usage of the proposed SPMT of 4-
bit strides with the rule sets of different sizes. Based on our 
results, we can save a large number of memory usages for 
the three real-life tables. The results shown in Table III are 
obtained after the redundant nodes are removed. When no 
partitioning approach is used, the required memory is too 
large to be hold in Xilinx Virtex-5 XC5VFX200T when the 
rule set size is large than 5k. The memory saves for all the 
tables are tremendous after both PW and PL partitioning 
schemes are applied. For example, the FW1_10K needs only 
16.88 Mb after both PW and PL partitioning schemes are 
applied compared with 2171.2 Mb when only PW scheme is 
applied. 

The FPGA implementation results are shown in Table IV. 
The method called Improved HyperCuts proposed by Jiang 
et al. [3] is also compared. In order to have a fair comparison 
with Improved HyperCuts, we use the same FPGA device 

and dual-port memory. Our hardware cost is lower than 
Improved HyperCuts and clock rate also is higher than 
Improved HyperCuts. As we can see, both schemes can 
achieve the throughput of OC-768 but our proposed schemes 
are better. For the table of 10k rules, our slice utilization is 
lower (24% vs. 33%) but our Block RAM utilization is 
higher (94% vs. 89%) than Improved HyperCuts. Hence, 
Xilinx Virtex-5 XC5VFX200T is sufficient to support the 
proposed SPMT with 10K rules. Table V compares the 
throughputs of the proposed SPMT and other existing 
schemes. Our proposed schemes are implemented with 
Xilinx Virtex-5 XC5VFX200T and packet size is 40 bytes. 
We can see that the proposed SPMT outperforms all the 
schemes. 

VI. CONCLUSION 
In this paper, we proposed a pipeline packet classification 

architecture which aims at achieving a very high throughput 
for large rule table. The Set Pruning Multi-bit Trie based on 
the set pruning trie is first proposed. The drawback of 
memory blowout for large rule tables caused by rule 
duplication is solved by the proposed rule table partitioning 
schemes PW and PL. The PL partitioning scheme uses 
dynamic programming for choosing the best lengths to 
divide rule table into many independent subgroups. Based on 
our performance experiments on Xilinx Virtex-5 FPGA 
device, our proposed design can achieve the throughput over 
100 Gbps with dual port memory while supporting up to l0k 
rules. 
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 Improved 
HyperCuts [7] 

Proposed 
PW 

Proposed
PW and PL

# of rules ACL1_10k ACL1_5k ACL1_10k 
# of slices / 
utilization 10,307/33% 2,242/8% 6,854/24% 

# of Block RAMs / 
utilization 407/89% 263/58% 429/94% 

Frequency (MHz) 125.4 167.44 173.02 
Throughput (Gbps) 80.23 107.16 110.73 

Approaches # of rules Throughput 
in Mpps 

Throughput 
in Gbps 

Proposed PW 4,451 334.88 107.16 
Proposed PW and PL 9,603 346.04 110.73 

Power Saved HyperCuts [6] ≈25,000 32.00 10.24 
Improved HyperCuts [3] 9,603 250.8 80.23 

BV-TCAM [9] 222 32 10.00 
2sBFCE [7] 4,000 5.86 1.88

B2PC [8] in ASIC 3300 42.5 13.60 
NTLMC [2] 12507 38 12.16 

TABLE V. COMPARING THROUGHPUT WITH OTHER METHODS 

TABLE IV. HARDWARE RESOURCE COMPARISON WITH IMPROVED 
HYPERCUTS 

TABLE III. MEMORY USAGE 
Methods (Mb) 

Rule sets No 
Partition Proposed PW 

Proposed 
PW and PL
combined Rule name # of rule 

R
ea

l 
R

ul
e ACL1 752  1.71 0.62 0.55 

FW1 269  13.31 5.12  1.33 
IPC1 1,550  551.14 7.12  3.41 

Sy
nt

he
tic

 R
ul

e 

ACL1_1K 916  5.04 2.40 1.60 
ACL1_5K 4,415  overflow 9.52 8.64 
ACL1_10K 9,603  overflow 31.20 15.36 
FW1_1K 791  41.20 16.48 2.48 
FW1_5K 4,653  overflow 485.60 11.28 
FW1_10K 9,311  overflow 2171.20 16.88 
IPC1_1K 938  510.56 4.08 2.08 
IPC1_5K 4,460  overflow 31.04 9.12 
IPC1_10K 9,037  overflow 94.08 16.08 
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