
A High-Speed and Memory Efficient Pipeline Architecture for Packet Classification

Yeim-Kuan Chang, Yi-Shang Lin, and Cheng-Chien Su
Department of Computer Science and Information Engineering

National Cheng Kung University, Tainan, 701, Taiwan
{ykchang, p7696104, p7894104}@mail.ncku.edu.tw

Abstract—Multi-field Packet classification is the main function
in high-performance routers. The current router design goal of
achieving a throughput higher than 40 Gbps and supporting
large rule sets simultaneously is difficult to be fulfilled by
software approaches. In this paper, a set pruning trie based
pipelined architecture called Set Pruning Multi-Bit Trie
(SPMT) is proposed for multi-field packet classification.
However, the problem of rule duplications in SPMT that may
cause a memory blowup must be solved in order to implement
SPMT with large rule sets in FPGA devices consisting of
limited on-chip memory. We will propose two rule grouping
schemes to reduce rule duplications in SPMT. The first scheme
called Partition by Wildcards (PW) divides the rules into
subgroups based on the positions of their wildcard fields. The
second scheme called Partition by Length (PL) rules partitions
the rules into subgroups according to their prefix lengths.
Based on our performance experiments on Xilinx Virtex-5
FPGA device, the proposed pipeline architecture can achieve a
throughput of over 100 Gbps with dual port memory. Also, the
rule sets of up to 10k rules can be fit into the on-chip memory
of Xilinx Virtex-5 FPGA device.

I. INTRODUCTION
As the Internet becomes widely used, the next generation

routers need to support a variety of value-added network
services such as QoS differentiation, traffic billing, network
security, and others. In order to support these services,
packet classification that classifies packets traversing the
Internet into flows is applied. It is well known that multi-
field packet classification is a difficult problem [11].

Algorithms for packet classification can be divided into
two groups: software-based and hardware-based. Software-
based algorithms have an advantage of the flexibility but are
slow. For example, pipeline and parallel techniques are hard
to apply to software-based algorithms and can hurt
throughputs. Today, researchers have turned to the hardware-
based solutions that use field programmable gate array
(FPGA), application specific integrated circuit (ASIC), and
ternary content addressable memory (TCAM). ASIC and
FPGA based approaches usually store the rule set in static
random access memory (SRAM) or TCAM that stores not
only 0 and 1 but also “don’t care” value on TCAM cells. At
present, the achievable link rate is OC-768, i.e., 40Gbps,
which is equivalent to the processing speed of one 40-byte
packet every 8 ns.

In order to achieve such high throughput, we develop a
data structure called set pruning multi-bit trie (SPMT) which
is very suitable for the pipeline architecture. In order to
reduce the memory blowout problem caused by the rule
duplications in set pruning tries, two rule partitioning

schemes are proposed to divide rules into subgroups based
on wildcards and prefix lengths. Then, SPMT is built for
each subgroup and all the SPMTs are searched in parallel to
obtain the best matched rule.

Our experimental results conducted on Xilinx Virtex-5
XC5VFX200T FPGA [13] device show that the proposed
pipeline architecture can achieve a throughput of over 100
Gbps with dual port memory. Also, the block RAMs of size
16,416 Kbits available in the Xilinx Virtex-5 XC5VFX200T
FPGA are capable of storing the rule sets of up to 10k rules.

The rest of the paper is organized as follows. In section 2,
we introduce the background about packet classification
problem and related work. The section 3 illustrates the
proposed design. Section 4 describes implementation of our
proposed design. In section 5, we present our experiment
results. The last section is the conclusion.

II. BACKGROUND AND RELATED WORK
Packet classification in the routers classifies packets into

flows by searching the rule set which consists of a finite set
of rules (or called filters) for obtaining the action, i.e. flow
ID. Each filter consists of a set of fields and the associated
action. The types of match conditions in the fields are
typically prefixes for 32-bit source and destination IP fields
(SA/DA), ranges for the 16-bit source and destination ports
(SP/DP), and an 8-bit protocol number for transport layer
protocol (PROT).

Formally, a filter F with d fields is defined as F = (f1,
f2, …, fd). A packet P is said to match a particular filter F if
the ith header field of packet P is contained in fi for all i. The
packet may match multiple filters and the classifier only
applies the action with highest priority among all the
matching filters [11]. An example rule set is shown in Table
I while we assume that the packet header fields consist of 8-
bit source/destination IP address prefix, 5-bit
source/destination port range, and 8-bit protocol number.

Not so many packet classification proposals have been
implemented on FPGAs. Existing FPGA implementations of
packet classification algorithms include Improved HyperCuts
[3], Power Saved HyperCuts [6], Dual Stage Bloom Filter
Classification Engine (2sBFCE) [7], Bloom Based Packet
Classification (B2PC) [8], and Nest Level Tuple Merging
and Cross-product (NTLMC) [2]. Also, it is worth
mentioning that several pipeline architectures have been
proposed for IP lookup based on trie data structures, such as
[4][5].

An improved data structure called set pruning trie [10]
avoids the backtrack operations and thus increases the search
speed. However, set pruning trie incurs a memory blowout
problem caused by the rule duplications in the tries at the

2010 18th IEEE Annual International Symposium on Field-Programmable Custom Computing Machines

978-0-7695-4056-6/10 $26.00 © 2010 IEEE

DOI 10.1109/FCCM.2010.40

215

Authorized licensed use limited to: National Cheng Kung University. Downloaded on June 05,2010 at 11:07:04 UTC from IEEE Xplore. Restrictions apply.

lower levels. Fig. 1 shows an example of the 1-bit set
pruning trie constructed from the rules in Table 1 by using
the two prefix fields. Many rules are duplicated in the lower
levels to avoid backtracks for finding the correct results.
Notice that the duplicated rule R6 is duplicated in many
places. Since trie-based data structure is very suitable for
pipeline design, our proposed SPMT pipeline architecture is
based on the set pruning trie.

III. PROPOSED SCHEMES
In this section, we propose to use the multi-bit version of

set pruning trie as our basic data structure because it is easy
to have a very fast pipeline implementation for the trie-based
structure. Due to a lot of rule duplications in the lower level
of the set pruning trie, we focus on reducing memory
consumption by using the rule partitioning schemes to avoid
duplicating rules as much as possible. Additionally, we target
on the 5-field rule tables.
A. Set Pruning Multi-Bit Trie

It is well-known that the traditional multi-bit trie is very
suitable for the IP address lookup pipelined search engine [5].
Because the 5-field set pruning trie uses too many stages, we
develop a multi-bit version of the set pruning trie called set
pruning multi-bit trie (SPMT) to minimize the number of
pipeline stages. The SPMT building process is very similar
to the set pruning trie. The only difference is that when
building SPMT we have to avoid the redundant data
structures caused by the address expansion onto the multi-bit
nodes. In other words, the nodes should be shared and
pointed to by as many pointers as possible. For the reason of
limited space, Fig. 2 only shows the 2-bit SPMT constructed
from the source and destination IP address fields of the rules
in Table I. Each node contains four elements with indices of
00, 01, 10, 11 in the 2-bit SPMT. Each element contains a
next-field link and a next-level link that are drawn by dotted
and solid lines in Fig. 2, respectively. The root node has 2

prefixes “*” and “0*” in the SA field. The prefix “0*” is
expanded to 00 and 01 and the prefix “*” is expanded to 00,
01, 10 and 11. Therefore, the next-field link of the two
elements 00 and 01 of the root node point to the same next-
field node X that consists of the sub-rules from R1, R2, R3,
and R6. Similarly, the elements 10 and 11 of the root node
point to node Y that consists of sub-rules from only R6.
When we construct DA field, the nodes W, X, Y could share
the same node Z pointed to by the same next-level link. Our
experimental results show that the node sharing can reduce
40%~45% of the trie nodes.

The search operation is similar to that of the traditional
set pruning trie [10]. The only difference is that we use
multiple bits to traverse the SPMT nodes. Although some
nodes can be shared, duplications inside the nodes are not
removed. Also, the duplications caused by pushing the rules
in upper levels to the lower levels incur a lot of memory
usage. Hence, we proceed to seek improvements by
analyzing the wildcard field values contained in rules as
follows.
B. Partitioning by Wildcards (PW)

We can divide 5-field rule set into 32 possible cases
(subgroups) such that the wildcard field values appear in
some specified fields. However, we ignore the protocol field
for dividing rules into subgroups because the protocol field
has more values of TCP and UDP than wildcard and thus the
impact on rule duplication from protocol field in set pruning
trie is much smaller than the other four fields. As shown in
the example of Fig. 1, wildcard fields will be duplicated in
many places in the lower levels. Hence, we can divide the
rules into at most 16 subgroups and an SPMT is built for
each subgroup by ignoring the wildcard fields. Thus, a lot of
rule duplications can be removed from the resulting SPMT.

As shown in Table II, we analyze three rule sets
containing about 10K rules generated by ClassBench [12].
The IPC tables have more non-empty subgroups than ACL
and Firewall tables which just have 5-6 subgroups. Although
we divide the rule set into subgroups by wildcards, non-
wildcard fields are still covered by short prefix of lengths 1
and 2. Based on our analysis on the length distribution of the
source and destination IP fields, some of the rule tables
contain up to 50 percentages of the rules whose lengths are 1
or 2. Therefore, we can further divide the subgroups
partitioned by wildcards into many smaller subgroups and
thus the reduction of rule duplications can be reduced further.
C. Partitioning by Lengths (PL)

Figure 2. The 2-bit SPMT constructed from the rules in Table I.

DA field

R6 R6

SA field

00 11 01 10
root

W

 R5

R1 R3R2 R7 Y X R1 R3 R2

Z
R7

R4R3 R3

Filter Action
SA DA SP DP PROT FlowID

R1 0* 10* [16:23] [0:31] UDP 0
R2 0* 00* [8:15] [28:31] UDP 1
R3 0* 1* [16:31] [28:31] UDP 2
R4 001* 11* [28:31] [28:31] UDP 3
R5 001* 0010* [4:5] [0:15] UDP 4
R6 * 111* [28:31] [0:15] UDP 5
R7 001* 0* [0:15] [16:23] UDP 6

TABLE I. A SAMPLE RULE SET

DA field

SA field
0

0

Figure 1. A 2-D 1-bit set pruning trie example.

R7 R3

R2 R1 R4

R6

R5

 R3

R2 R1

R6

R3

R4

R6

216

Authorized licensed use limited to: National Cheng Kung University. Downloaded on June 05,2010 at 11:07:04 UTC from IEEE Xplore. Restrictions apply.

In some cases, using PW scheme to partition Firewall
tables still needs a lot of memory because Firewall has many
prefixes of length 0, 1 and 2 in destination IP address fields.
The prefixes of lengths 0, 1, and 2 almost occupy over half
of rules in Firewall tables. Hence, we focus on partitioning
the rule set by prefix length. The main idea is that we like to
select k boundary prefix lengths in the first field and divide
the rule set into k + 1 subsets. If k = 1 and the selected length
is t, the rules with the first field value of prefix length less
than or equal to t are put into one subset and the other rules
are put into another subset. This case is exactly the same as
the simple k_set technique [1]. Thus, the original rules in
which prefix field lengths shorter than and equal to t in the
subset will not be duplicated in the other subset containing
the prefixes of lengths longer than t.

To further explore the simple k_set technique, we
propose the dynamic programming formula to select k
boundary prefix lengths for the purpose of partitioning rules
into (k + 1) subsets. By using the dynamic programming
technique, we can construct a simple formula to compute
what is the best set of k lengths to minimize the rule
duplications. The dynamic programming formula is based on
the Duplicating Cost (DC) which is defined to be number of
times that a rule is duplicated in SPMT. We use the example
in Fig. 1 to describe how to calculate the DC of a rule R6.
Assume R6 = (*, 111*) is a 5-field rule with the first and
second field values set to * and 111*, respectively. Rule R6
should be duplicated in the valid nodes (prefixes) covered by
R6 in the binary trie of the first field. Fig. 1 shows that there
are two valid nodes covered by R6 in the first field that are
marked as gray circles. For each valid node covered by R6 in
the first field binary trie, we have to calculate the number of
nodes in the second field trie that are covered by the second
field value of R6. We continue the same process in the
following fields until the penultimate field. Finally, the DC
of rule R6 can be obtained by summing up all the
duplications in all the fields up to the penultimate field.
Since the second field is already the penultimate field, no
further computation is needed in the third field of Figure 1.
Totally, rule R6 is duplicated 3 times and thus the
duplicating cost of R6 is 3 (denoted as DuplicatingCost(R6)
= 3).

We will design our dynamic programming formula.
Consider the general problem of determining the minimum
duplicating cost DC [L, k] for prefixes of lengths 0 to L by
using k boundary lengths. The number k is constrained by the
maximum boundary length L, i.e., k must not be greater than
L. The prefix length of rule r is denoted by PLen(r). When
we select length t as the first boundary length, all the prefixes
of lengths greater than or equal to t have to be expanded to
length L which is primed to the rule duplications. After
selecting one boundary length, k – 1 more boundary lengths
have to be selected afterwards. The remaining k – 1
boundary lengths are in the range [k – 1, L – 1]. Finally, we
recursively find the minimum DC for the prefixes of lengths

1 to t and the calculate DC for the rules of lengths greater
than t. As a result, we can form the dynamic programming
formula as follows.

{ 1,..., 1}
{ | () }

{ | () }

[,] [, 1] ()

[,0] ()

t k L
r R PLen R L

r R PLen R L

DC L k DC t k DuplicatingCost r

DC L DuplicatingCost r

Min
∈ − −

∈ ≤

∈ ≤

⎧ ⎫⎪ ⎪= − +⎨ ⎬
⎪ ⎪⎩ ⎭

=

∑

∑

The initial problem is DC [Lmax_1, k], where Lmax_1 is the
maximum prefix length of the first field that is targeted for
partition.

IV. IMPLEMENTATION
A pipelined and parallel design is used to improve the

throughput of our proposed SPMT. The trie nodes in the
same level are mapped to a single pipeline stage. Each
packet traversing the SPMT level by level is equivalent to
traversing the pipeline architecture stage by stage. Each
pipeline stage must perform the following actions:
1. The memory of the SPMT is accessed to obtain the next

level address and next field address.
2. The next field memory address of the longest prefix is

recorded from the first field to the last field.
3. If the last field is reached, the matching rule information

is obtained and then its priority is compared with
matching rule obtained from previous stages.
FPGAs provide massive parallelism and high-speed dual-

port Block RAMs distributed across the device. We exploit
these features and propose a parallel architecture, as shown
Fig. 3. The design is based on the following considerations:
1. A pipeline Pi is constructed for each subgroup (PRTi) of

the original rules after applying the proposed PW and PL
partitioning schemes. The entire rule set is equal to ∑
PRTi for i = 1 … n.

2. Traversing the SPMT level to level and each level is
mapped to a stage in pipeline. It is shown as gray color
blocks in Fig 3.

3. Assume a field is X-bit wide and stride is Y-bit. The
number of pipeline stages required is ⎡X/Y⎤.

4. The incoming packets will be input in all pipelines in
parallel. Then, each pipeline is executed independently.
The packet header field arrangement engine will select a
field order to construct the proposed SPMT for each
subgroup.
Each pipeline will output a result which will be sent to

priority resolver to select the rule with highest priority as the
final result.

Rule name ACL1_10K FW1_10K IPC_10K
of filters 12947 13146 11831
of groups 5 6 12

TABLE II. SUBGROUPS PARTITIONED BY WILDCARD POSITIONS.

Pr
io

ri
ty

 r
es

ol
ve

r

Pa
ck

et
 h

ea
de

r
fie

ld

ar
ra

ng
em

en
t e

ng
in

e

Set pruning multi-bit trie pipeline P2

Set pruning multi-bit trie pipeline Pn

Pa
ck

et
s

Figure 3. Block diagram of the parallel linear pipeline.

Set pruning multi-bit trie pipeline P1

M
at

ch
ed

 R
ul

e

217

Authorized licensed use limited to: National Cheng Kung University. Downloaded on June 05,2010 at 11:07:04 UTC from IEEE Xplore. Restrictions apply.

V. PERFORMANCE
We use Xilinx ISE 10.1 development tools and the target

device is Xilinx Virtex-5 XC5VFX200T [13] with ‘–2’
speed grade. The tables are obtained from a publicly
available tool, ClassBench [12] and three real-life rule tables.
We evaluated the memory usage of the proposed SPMT of 4-
bit strides with the rule sets of different sizes. Based on our
results, we can save a large number of memory usages for
the three real-life tables. The results shown in Table III are
obtained after the redundant nodes are removed. When no
partitioning approach is used, the required memory is too
large to be hold in Xilinx Virtex-5 XC5VFX200T when the
rule set size is large than 5k. The memory saves for all the
tables are tremendous after both PW and PL partitioning
schemes are applied. For example, the FW1_10K needs only
16.88 Mb after both PW and PL partitioning schemes are
applied compared with 2171.2 Mb when only PW scheme is
applied.

The FPGA implementation results are shown in Table IV.
The method called Improved HyperCuts proposed by Jiang
et al. [3] is also compared. In order to have a fair comparison
with Improved HyperCuts, we use the same FPGA device

and dual-port memory. Our hardware cost is lower than
Improved HyperCuts and clock rate also is higher than
Improved HyperCuts. As we can see, both schemes can
achieve the throughput of OC-768 but our proposed schemes
are better. For the table of 10k rules, our slice utilization is
lower (24% vs. 33%) but our Block RAM utilization is
higher (94% vs. 89%) than Improved HyperCuts. Hence,
Xilinx Virtex-5 XC5VFX200T is sufficient to support the
proposed SPMT with 10K rules. Table V compares the
throughputs of the proposed SPMT and other existing
schemes. Our proposed schemes are implemented with
Xilinx Virtex-5 XC5VFX200T and packet size is 40 bytes.
We can see that the proposed SPMT outperforms all the
schemes.

VI. CONCLUSION
In this paper, we proposed a pipeline packet classification

architecture which aims at achieving a very high throughput
for large rule table. The Set Pruning Multi-bit Trie based on
the set pruning trie is first proposed. The drawback of
memory blowout for large rule tables caused by rule
duplication is solved by the proposed rule table partitioning
schemes PW and PL. The PL partitioning scheme uses
dynamic programming for choosing the best lengths to
divide rule table into many independent subgroups. Based on
our performance experiments on Xilinx Virtex-5 FPGA
device, our proposed design can achieve the throughput over
100 Gbps with dual port memory while supporting up to l0k
rules.

REFERENCES
[1] Y.-K. Chang, “Efficient Multidimensional Packet Classification with

Fast Updates,” IEEE Transactions on Computers, Vol. 58, No. 4, pp.
463-479, Apr. 2009.

[2] S. Dharmapurikar, H. Song, J. Turner, and J. Lockwood, “Fast Packet
Classification Using Bloom Filters,” In ACM/IEEE ANCS, 2006.

[3] W. Jiang and V. K. Prasanna, “Large-Scale Wire-Speed Packet
Classification on FPGAs,” In ACM/SIGDA FPGA, 2009.

[4] W. Jiang and V. K. Prasanna, “Parallel IP Lookup using Multiple
SRAM-based Pipelines,” In IEEE IPDPS, 2008

[5] W. Jiang and V. K. Prasanna, “A Memory-Balanced Linear Pipeline
Architecture for Trie-Based IP Lookup,” In IEEE HOTI, 2007

[6] A. Kennedy, X. Wang, Z. Liu, and B. Liu, “Low Power Architecture
for High Speed Packet Classification,” In ACM/IEEE ANCS, 2008.

[7] A. Nikitakis and I. Papaefstathiou, “A Memory-Efficient FPGA-
Based Classification Engine,” In IEEE FCCM, 2008.

[8] I. Papaefstathiou and V. Papaefstathiou, “Memory-Efficient 5D
Packet Classification at 40 Gbps,” In IEEE INFOCOM, 2007.

[9] H. Song and J. W. Lockwood, “Efficient Packet Classification for
Network Intrusion Detection Using FPGA,” In ACM FPGA, 2005.

[10] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel, “Fast and
Scalable Layer Four Switching,” In ACM SIGCOMM, 1998.

[11] D. E. Taylor, “Survey and Taxonomy of Packet Classification
Techniques,” ACM Computing Surveys, vol. 37, no.3, pp. 238-275,
Sep. 2005.

[12] D. E. Taylor and J. S. Turner, “ClassBench: A Packet Classification
Benchmark,” IEEE/ACM Transations on Networking, vol. 15, no. 3,
pp. 499-511, June 2007.

[13] Xilinx, “Virtex-5 Family Overview”, Product Specification, DS100
(v5.0), Feb. 6, 2009, at http://www.xilinx.com

 Improved
HyperCuts [7]

Proposed
PW

Proposed
PW and PL

of rules ACL1_10k ACL1_5k ACL1_10k
of slices /
utilization 10,307/33% 2,242/8% 6,854/24%

of Block RAMs /
utilization 407/89% 263/58% 429/94%

Frequency (MHz) 125.4 167.44 173.02
Throughput (Gbps) 80.23 107.16 110.73

Approaches # of rules Throughput
in Mpps

Throughput
in Gbps

Proposed PW 4,451 334.88 107.16
Proposed PW and PL 9,603 346.04 110.73

Power Saved HyperCuts [6] ≈25,000 32.00 10.24
Improved HyperCuts [3] 9,603 250.8 80.23

BV-TCAM [9] 222 32 10.00
2sBFCE [7] 4,000 5.86 1.88

B2PC [8] in ASIC 3300 42.5 13.60
NTLMC [2] 12507 38 12.16

TABLE V. COMPARING THROUGHPUT WITH OTHER METHODS

TABLE IV. HARDWARE RESOURCE COMPARISON WITH IMPROVED
HYPERCUTS

TABLE III. MEMORY USAGE
Methods (Mb)

Rule sets No
Partition Proposed PW

Proposed
PW and PL
combined Rule name # of rule

R
ea

l
R

ul
e ACL1 752 1.71 0.62 0.55

FW1 269 13.31 5.12 1.33
IPC1 1,550 551.14 7.12 3.41

Sy
nt

he
tic

 R
ul

e

ACL1_1K 916 5.04 2.40 1.60
ACL1_5K 4,415 overflow 9.52 8.64
ACL1_10K 9,603 overflow 31.20 15.36
FW1_1K 791 41.20 16.48 2.48
FW1_5K 4,653 overflow 485.60 11.28
FW1_10K 9,311 overflow 2171.20 16.88
IPC1_1K 938 510.56 4.08 2.08
IPC1_5K 4,460 overflow 31.04 9.12
IPC1_10K 9,037 overflow 94.08 16.08

218

Authorized licensed use limited to: National Cheng Kung University. Downloaded on June 05,2010 at 11:07:04 UTC from IEEE Xplore. Restrictions apply.

